

MINUTES OF THE COMBINED MEETING OF RURAL COMMUNITIES COMMITTEE AND

STAKEHOLDER COMMITTEE Held October 27, 2025

GKGSA Rural Community Committee Chair Tantau called to order a meeting of the Combined Rural Communities and Stakeholder committees.

MEMBERS' PRESENT:

RURAL COMMUNITIES
Chris Tantau

STAKEHOLDER
Marty Toomey
Joe Cardoza

Paul Boyer Rudy Mendoza

Zack Stuller

Emmanuel Llamas

Jonathan Vaughn Blake Mauritson

Marty Toomey Soapy Mulholland Cornell Kasbergen

Brian Watte John Gailey Matt Hutcheson

MEMBERS ABSENT:

RURAL COMMUNITIES

STAKEHOLDER
James Silva

Danny Holguin Monroe Self

Collin Fernandes

Deidre Root Carol Fina Bobby Lentz

1. CALL TO ORDER

Chair Tantau called the meeting of the Combined Rural Communities Committee and Stakeholder Committee to order at 1:30 PM.

2. ROLL CALL

Roll call was taken for the meeting and documented above.

3. PUBLIC COMMENT

Chair Tantau opened the floor for public comment on items not on the agenda. No public comments were received.

Greater Kaweah GSA - Combined Meeting of the RCC and SC Meeting Minutes
[2]
October 27, 2025

4. <u>APPROVAL OF MINUTES</u>

The Committee reviewed the minutes of the August 25, 2025 meeting. Corrections were noted regarding attendance, including clarification of members who were present and absent. A motion was made to approve the minutes as corrected.

Motion: Cornell Kasbergen Second: Marty Toomey Vote: Motion carried unanimously.

5. GSA ADMINISTRATION

Mark Larsen provided an administrative update. He announced that the new GKGSA website is live and encouraged committee members to report any issues or errors. He noted that while the new site is more complex to manage, it offers improved functionality and reliability compared to the prior platform. Mr. Larsen then provided an invoicing update. He reported that the Board of Directors approved initiation of the lien process for unpaid 2023 invoices at its October 13, 2025 meeting. Staff anticipates proceeding with lien filings within approximately one week. Payments continue to be received, reducing the number of properties subject to liens. Discussion followed regarding timing of liens relative to tax bills and the slow pace of 2024 invoice collections. Staff emphasized that liens currently apply only to unpaid 2023 invoices and that continued reminders will be sent for outstanding balances.

6. GREATER RULES AND REGULATIONS

Mr. Larsen summarized recent Board actions related to amendments to the Rules and Regulations, particularly regarding groundwater transfer policies. He reported that, based on recommendations from this Committee, the Board approved allowing transfers of sustainable yield water anywhere within the GKGSA boundary without distance limitations or transfer loss reductions. These changes are now reflected in the Fourth Amendment to the Rules and Regulations.

The Board also elected to continue allowing Tier 1 and Tier 2 water transfers under existing rules, despite prior Committee discussion recommending restriction of such transfers. Staff noted that historical transfer volumes for tiered water have been limited and will be closely monitored to avoid localized impacts, including subsidence or groundwater level declines.

Clarification was provided that the revised sustainable yield transfer rules apply beginning in the 2025 water year. Carryover water from 2023 and 2024 does not qualify under the new transfer provisions. Discussion ensued regarding transfers across GSA boundaries, particularly for landowners farming contiguous properties across agency lines. Staff noted that transfers are currently permitted only where neighboring GSAs have compatible transfer policies. Boundary adjustments and subbasin issues were discussed, with staff indicating that any changes would be evaluated on a case-by-case basis rather than through broad policy revisions.

Additional discussion addressed the five-year expiration period for transferred water credits and whether expiration resets upon transfer. Staff explained that current rules allow transferred water to retain a five-year life, and potential concerns about future "banking" or gaming of credits may be addressed through priority-of-use policies if necessary.

7. WY 2025 LAND FALLOWING PROGRAM

Staff provided an update on the 2025 Land Fallowing Program. To date, approximately 29 contracts are available, with 16 executed, representing just under 4,000 acres if fully subscribed. One participant opted out of the program. The total estimated cost is approximately \$1.6 million.

Discussion focused on geographic distribution of participants, contract timelines, and challenges related to program rules. Members discussed whether limited dryland farming, cover crops, or grazing should be allowed on fallowed acres to reduce dust and weed pressure. Staff explained that monitoring non-

Greater Kaweah GSA - Combined Meeting of the RCC and SC Meeting Minutes

[3]

October 27, 2025

irrigated cropping presents enforcement challenges and that current contracts restrict activity primarily to grazing.

Committee members discussed the economic impacts of fallowing, including lost agricultural production and employment. Staff noted that while economic studies are not required under SGMA, prior analyses—including work by UC Berkeley—have documented regional impacts. Ongoing statewide economic impact studies were also referenced.

The Committee agreed that the fallowing program remains an important but costly tool and should continue to be evaluated as a pilot program.

8. LAND IQ DAILY ET MONITORING TOOL

Staff introduced Joel Kimmelshue of Land IQ, who presented a detailed overview of a proposed daily evapotranspiration (ET) monitoring tool. Mr. Kimmelshue explained the current monthly ET reporting process and the demand from growers for more frequent, near-real-time data to support irrigation management and allocation tracking.

The daily ET tool would provide field-level consumption estimates updated daily, reconciled monthly to ensure consistency with existing 30-day reports. The platform allows growers to set target thresholds, view cumulative use, compare usage against historical percentiles, and download data for their own records. A manager portal would allow GSA staff to track participation and aggregate trends. Cost was estimated at \$0.55 per managed acre per year, offered only as a basin-wide service rather than on an individual opt-in basis. Discussion focused on grower adoption, educational needs, potential benefits, and whether a pilot program or further outreach should be pursued before implementation. Committee members expressed mixed views, acknowledging potential value for some growers—particularly those under tighter allocations—while noting that others may not utilize the tool regularly. Staff proposed continued discussion and outreach, including feedback from neighboring GSAs currently testing the platform.

9. WELL MITIGATION PROGRAM

Mr. Larsen provided an update on the Well Mitigation Program. Self-Help Enterprises has submitted five well claims, three of which have been approved for pre-drilling. Two additional claims remain under review due to site-specific complexities. Staff emphasized that each claim is unique and requires careful evaluation, including assessment of pre-existing conditions.

Updates were provided on mitigation efforts near the community of Tooleville/Pixley area, including proposed recharge basins and coordination with irrigation districts. Staff also discussed a potential consolidation opportunity involving a small community water system to address multiple at-risk wells more efficiently.

10. MITIGATION AND WATER ACQUISITION STRATEGIES

Staff discussed the Board-approved allocation of \$2 million annually for mitigation-related water strategies, including water purchases. Complexities of water trades, credit purchases, and lack of delivery infrastructure were discussed. Committee members debated whether funds are best spent on acquiring wet water, purchasing and extinguishing groundwater credits, or expanding fallowing. The Committee emphasized the importance of cost-effectiveness, long-term overdraft reduction, and coordination with neighboring GSAs. Members encouraged staff to further analyze options and develop clear recommendations for Board consideration.

11. WY 2026 ALLOCATION

Mr. Larsen reported that the Board approved the 2026 allocation framework consistent with Committee recommendations. Sustainable yield remains at 0.62 AF/acre, with Tier 1 at 0.31 AF/acre and Tier 2 at

Greater Kaweah GSA - Combined Meeting of the RCC and SC Meeting Minutes [4]

October 27, 2025

0.23 AF/acre. Rainfall allocations were adjusted geographically across the basin to better reflect east—west gradients.

12. SUBSIDENCE MONITORING AND WELL REGISTRATION

Staff provided updates on subsidence monitoring efforts, including installation of transducers in existing wells and challenges securing landowner participation for new monitoring wells. Legal constraints related to siting wells on board member properties were discussed and will be further reviewed. An update was also provided on the Well Registration Program. Staff emphasized the importance of registration for improving data quality and reducing uncertainty in groundwater management. Field verification using aerial imagery and on-the-ground inspections is ongoing. Registration remains voluntary but is expected to become mandatory in the future.

13. KAWEAH SUBBASIN GSP STATUS

Mr. Larsen reported that State Water Resources Control Board staff will recommend returning the GSP to DWR for oversight at the December 2, 2025 Board meeting. Staff plans to provide public comment in support of the recommendation. DWR has indicated it may take up to two years to complete reevaluation of returned plans.

Additional updates were provided on groundwater quality sampling, interconnected surface water monitoring, and coordination with partner agencies.

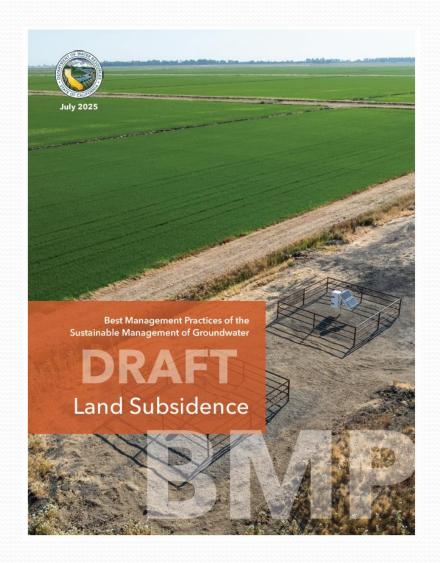
14. NEXT MEETING

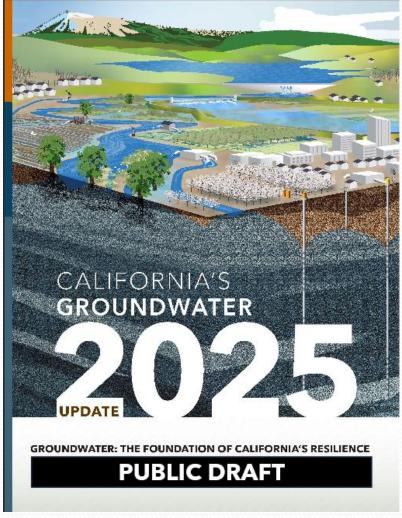
The November meeting was canceled. The Committee agreed to reconvene in December, with agenda items to include continued discussion of the Land IQ daily ET tool and mitigation strategies related to water and credit management.

15. <u>ADJOURNMENT</u> There being no further business, the meeting was adjourned. Respectfully Submitted, Mark Larsen Secretary, Combined RCC & SC

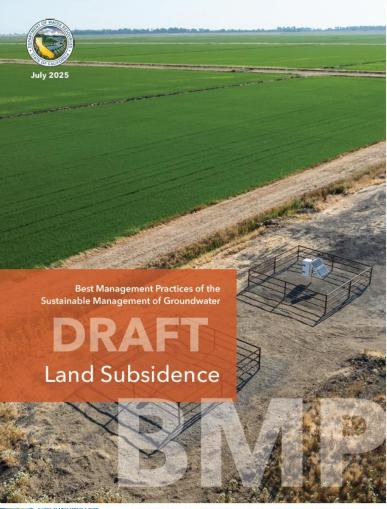
Overview of Recent California Department of Water Resources Documents on Land Subsidence

December 19, 2025


Agenda

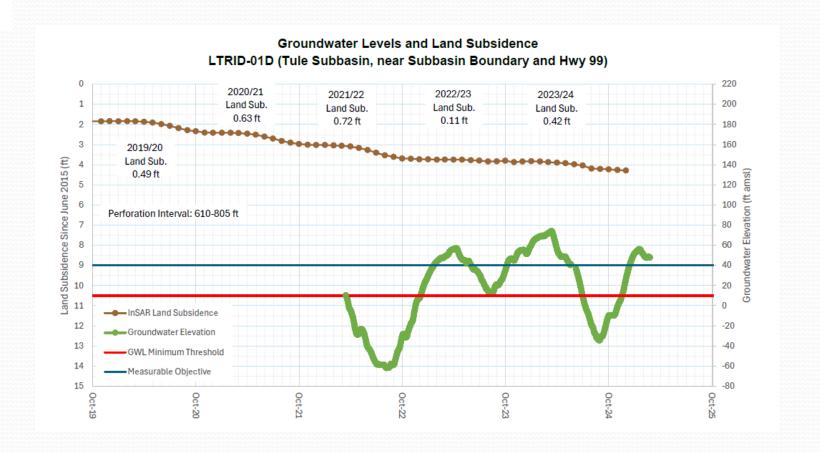

- Overview of Selected Sections of the California Department of Water Resources Draft Land Subsidence Best Management Practices
- Overview of Selected Graphs in Appendix I of the Department of Water Resources Public Draft of the 2025 Bulletin 118
- Observations of Bulletin 118 1D Subsidence
- Critical Head and Minimum Thresholds

The California Department of Water Resources Has Recently Released Two Documents Relating to Land Subsidence



We Will Address Two Sections of the Draft BMP to Inform Discussion of the Data in Bulletin 118

- 4. Land Subsidence Fundamentals
- 5. Technical Assistance

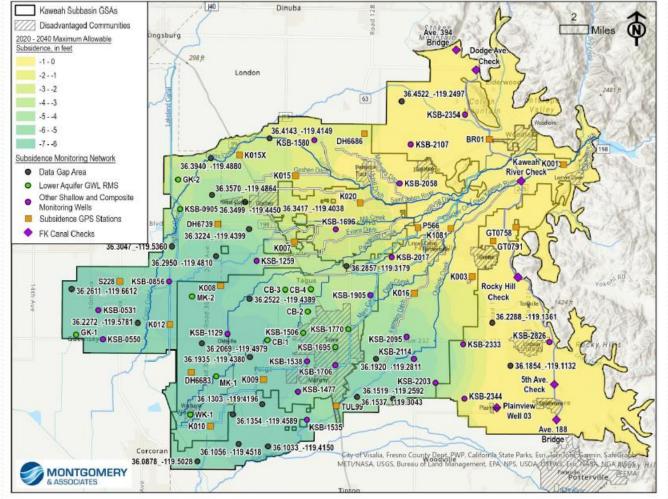

\sim	^	m	tم	n
	U	ш	ιυ	ш

	Objective						
	Uses a	nd Limit	ations	2-1			
	2.1	Legal D	isclaimer	2-1			
	Relationship of Subsidence BMP to other BMPs						
)	Land S	Land Subsidence Fundamentals4-					
	4.1 What Causes Land Subsidence						
	4.2	Subside	ence Processes Summary	4-3			
		4.2.1	Fine-Grained Sediment Properties	4-3			
	4.3	Limiting	g Subsidence	4-8			
	4.4	4.4 Subsidence in California4-1					
	Techni	Technical Assistance					
	5.1	Land St	ubsidence Monitoring	.5-14			
		5.1.1	Land Surface Elevation Monitoring	.5-14			
		5.1.2	Groundwater Level Monitoring with Consideration of Subsidence	.5-18			
		5.1.3	Groundwater Pumping Monitoring	.5-23			
	5.2	ring Infrastructure	.5-23				
	5.3	Estimat	ting Critical Head	.5-25			
		5.3.1	Trend-based Analysis	.5-26			
		5.3.2	Empirical Analysis	.5-27			
		5.3.3	Modeling Analysis	.5-28			
		5.3.4	Considerations and Limitations	.5-29			
	5.4	Land St	ubsidence Numerical Modeling	.5-29			
	Land S	ubsiden	ce and the Sustainable Groundwater Management Act	6-1			
	6.1 Subsidence Monitoring for Sustainable Management under SGMA						
		6.1.1	Monitoring Protocols	6-2			
		6.1.2	Land Surface Elevation Monitoring for Sustainable Management	6-2			
		6.1.3	Groundwater level Monitoring with Consideration of Subsidence for Sustainable Management Criteria	6-2			
		6.1.4	Groundwater Pumping Monitoring with Consideration of Sustainable Management	6-3			
	6.2	Land Su	ubsidence Undesirable Results	6-3			
	6.3 Land Subsidence Minimum Thresholds						
		6.3.1	Residual Subsidence and Minimum Thresholds	6-6			
	6.4	ubsidence Measurable Objective	6-6				
	6.5	ubsidence Interim Milestones	6-6				

Section 4 Land Subsidence Fundamentals – Limiting Land Subsidence

4.3 Limiting Subsidence

"The key to minimizing ongoing subsidence and avoiding future subsidence is a recovery of groundwater levels to elevations above critical head in the fine-grained units as high and as quickly as possible."


Section 5 Technical Assistance – Land Subsidence Monitoring

5.1.1 Land Surface Elevation Monitoring

- Benchmarks "Spirit Level" Monitoring
- 2. GPS Stations
- 3. Extensometers
- 4. InSAR

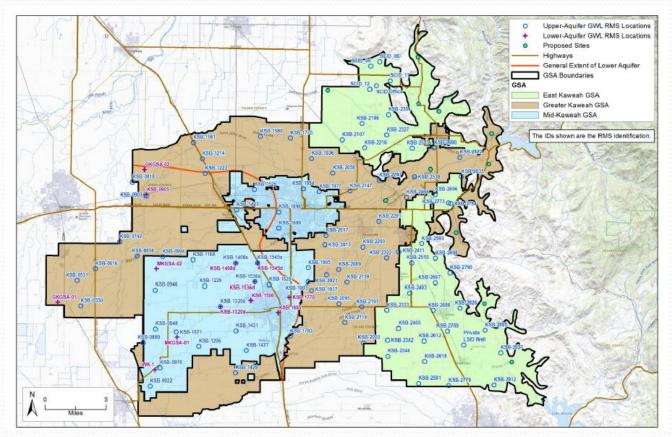
All these methods are employed in the Kaweah Subbasin

Data Gaps Remain

Section 5 Technical Assistance – Land Subsidence Monitoring

5.1.2 Groundwater Level Monitoring with Consideration of Subsidence

The BMP emphasizes frequency of monitoring – semi-annual


or even quarterly is not enough.

The Kaweah Subbasin monitors multiple depth specific monitoring wells and existing wells with known completion

Dedicated monitoring wells are equipped with pressure transducers collecting data continuously

Data Gaps Remain

Section 5 Technical Assistance – Land Subsidence Monitoring

5.1.3 Groundwater Pumping Monitoring

In areas experiencing land subsidence near infrastructure, the best management practice is to establish pumping reporting.

The most accurate way to gain local scale understanding of pumping is to use meters. The measured pumping data can be combined with groundwater level data to help identify intervals where the compaction is originating, which allows managers to adjust practices to avoid or mitigate subsidence.

Current Groundwater Production in the Basin is Estimated from Evapotranspiration Data – Land IQ

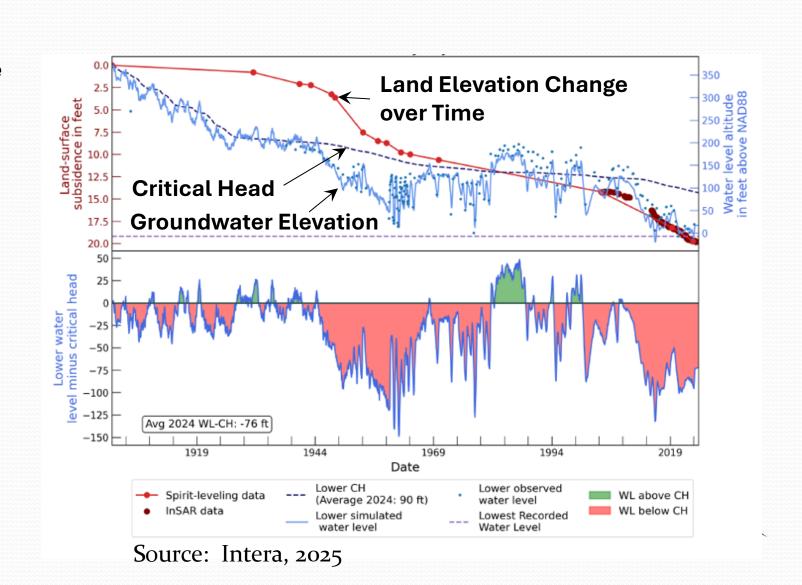
The GKGSA is implementing a well registry and optional meter requirements

Section 5 Technical Assistance – Identifying Infrastructure

5.2 Identifying Infrastructure

An essential part of subsidence management under SGMA is review and identification of infrastructure within a basin as well as determining the amount of subsidence that may interfere with these surface land uses.

Section 5 Technical Assistance – Estimating Critical Head


5.3 Estimating Critical Head

Critical head is a quantitative value representing the specific groundwater level (pressure) in compressible sediment below which permanent compaction begins...

There Are Several Methods Identified in the BMP for Estimating Critical Head

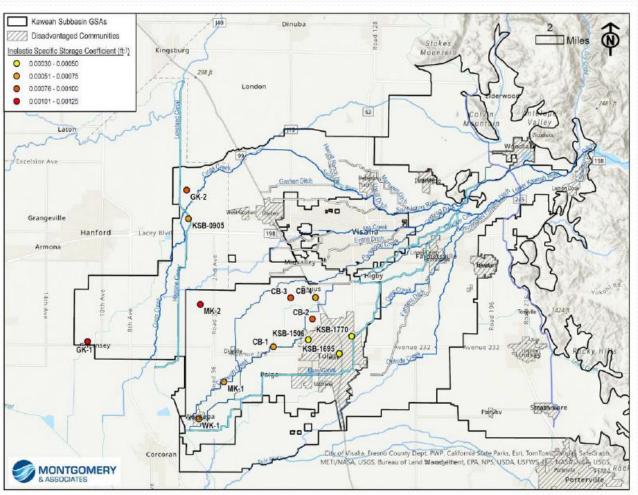
Examples Provided in the BMP and Bulletin 118 Use a 1D Numerical Model

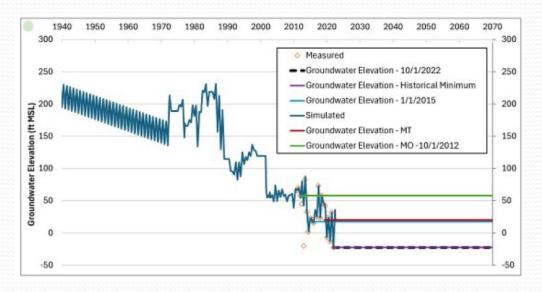
Section 5 Technical Assistance – Numerical Modeling

5.4 Land Subsidence Numerical Modeling

Numerical models are decision-support tools for understanding groundwater systems and evaluating management strategies to avoid or minimize subsidence in subsidence-prone basins.

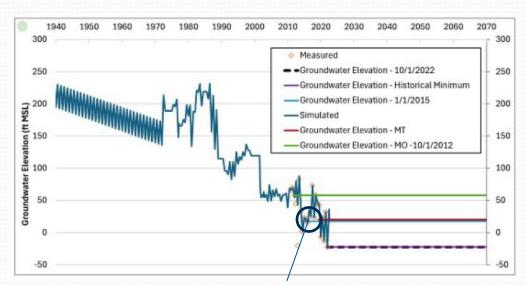
A groundwater flow model has been developed for the Kaweah Subbasin

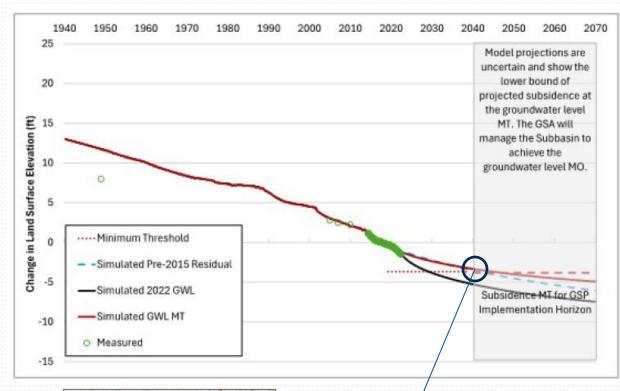

The model is currently being updated to include capability to estimate land subsidence including residual subsidence

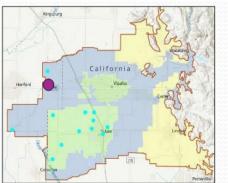


Montgomery and Associates Conducted 1D Modeling at 13 Sites for the Groundwater Sustainability Plan (GSP)

The 1D Model Work for the GSP was for the Purpose of Informing the Lower Aquifer Groundwater Level Minimum Threshold

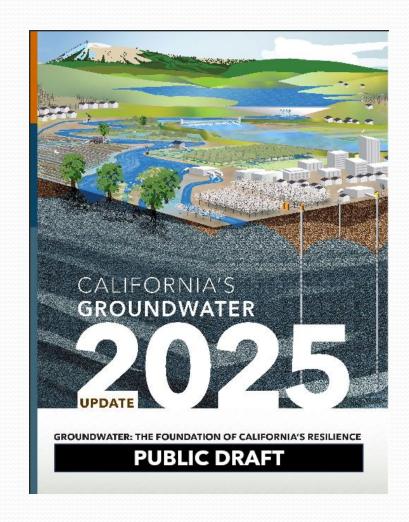


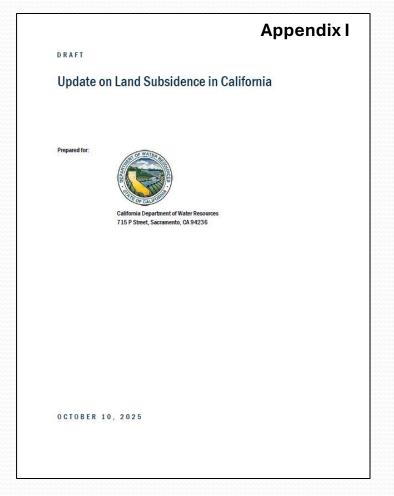



Lower Aquifer Groundwater Level Minimum Thresholds were Established to Avoid New Subsidence After 2040

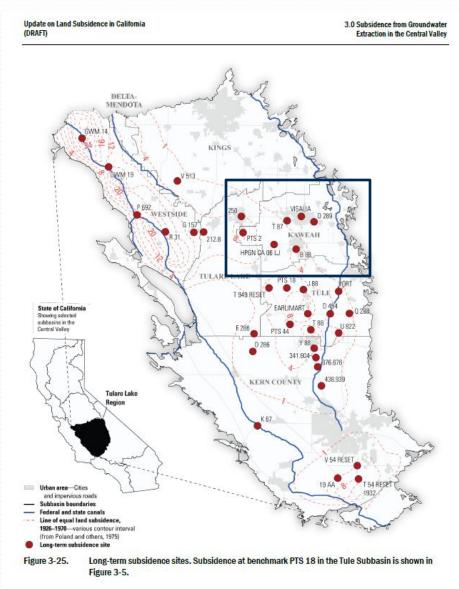
The Original 1D Analysis Was Not Used to Estimate Critical Head

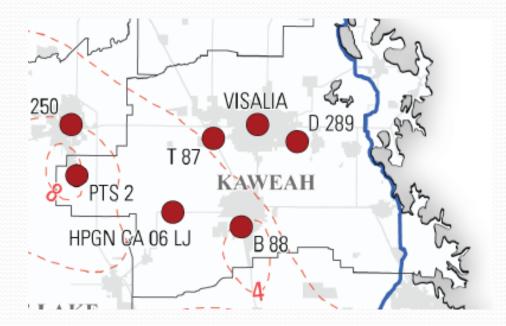
Land Subsidence Simulation Based on Fixed Groundwater Level at 2015 Conditions into the Future



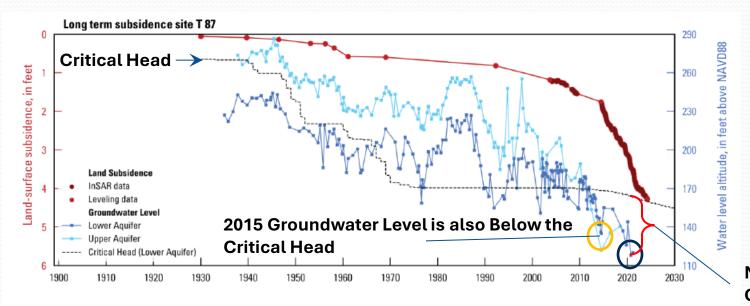

Maintaining Lower Aquifer Groundwater Levels Above The Minimum Threshold Is Predicted to Enable us to Achieve our Land Subsidence Goals

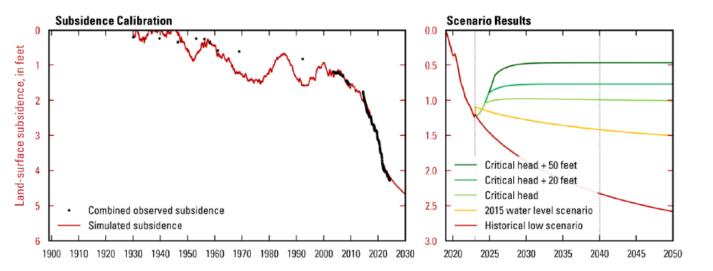
The Department of Water Resources Has Released a Public Review Draft of Bulletin 118

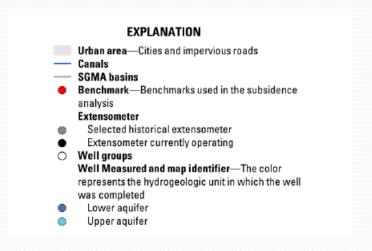


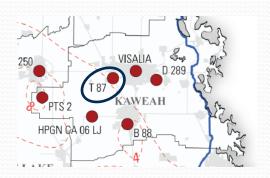


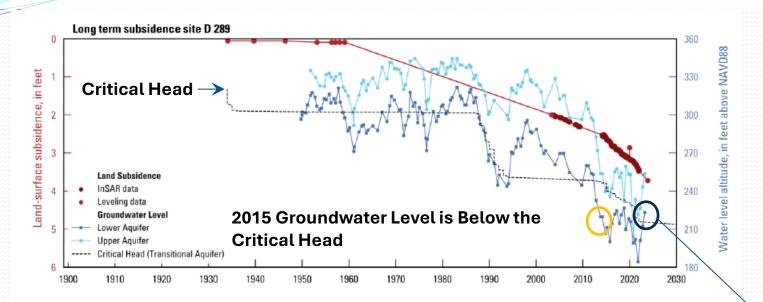
Bulletin 118 Appendix I Includes 1D Model Analyses at Six Locations in the Kaweah Subbasin

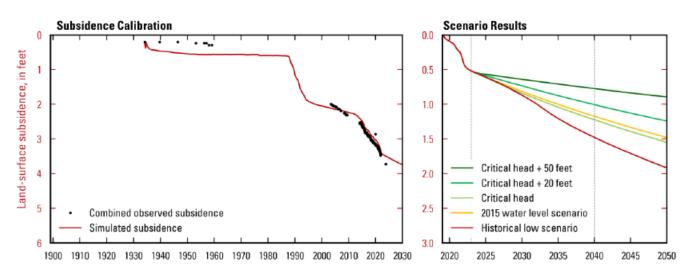


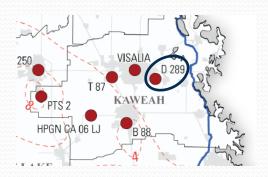

The 1D Analyses Were Conducted, in Part, to Estimate the Critical Head at these Locations

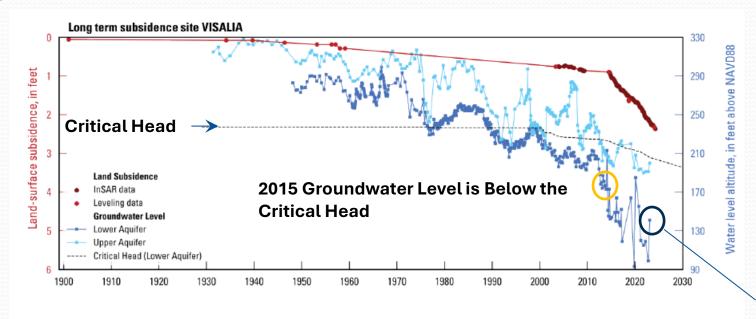


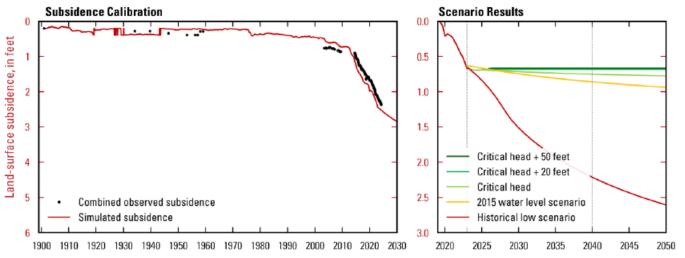

Critical Head Estimate for Western Visalia

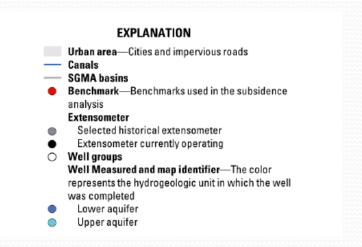


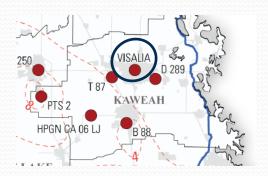

Most Recent Groundwater Level is ~ 30 ft Below the Critical Head

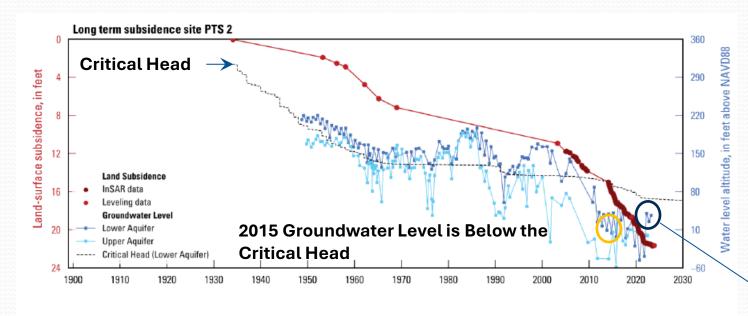

Critical Head Estimate for Eastern Visalia

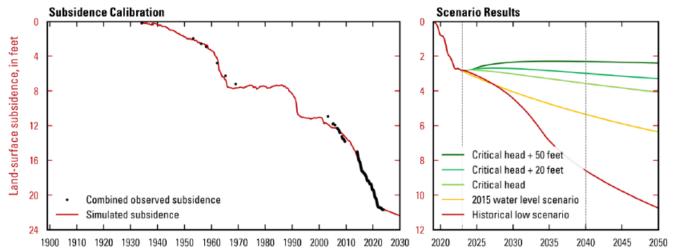


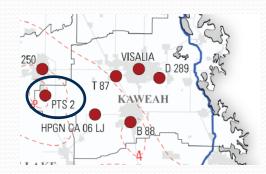

Most Recent Groundwater Level is Above the Critical Head

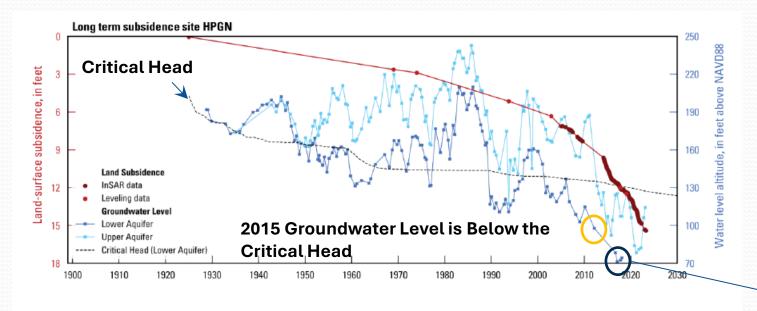


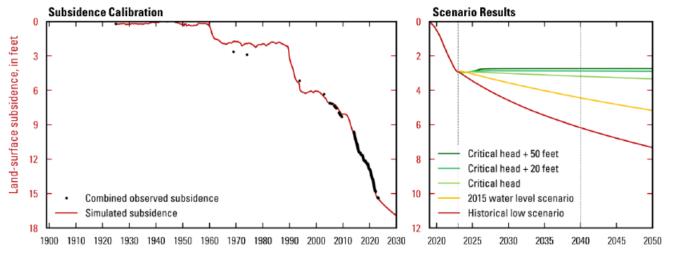

Critical Head Estimate for Central Visalia

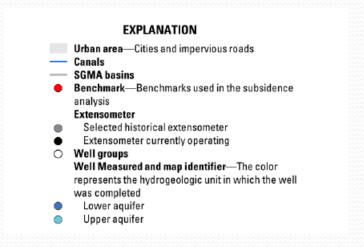


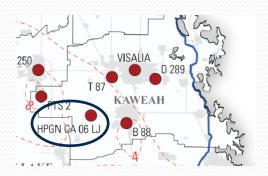

Most Recent Groundwater Level is ~ 60 ft Below the Critical Head

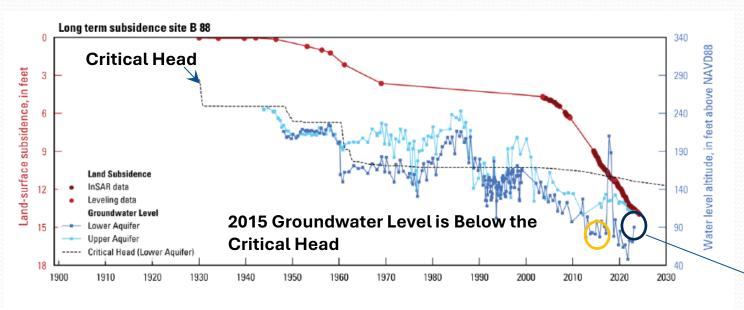

Critical Head Estimate for Western GKGSA

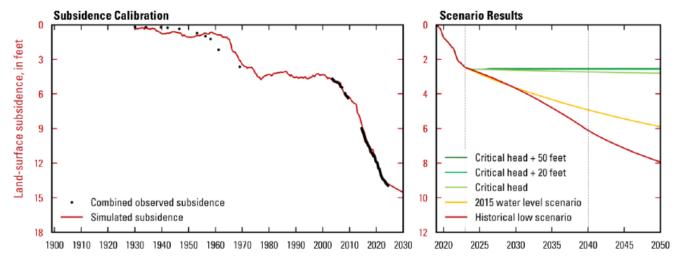

EXPLANATION Urban area—Cities and impervious roads Canals SGMA basins Benchmark—Benchmarks used in the subsidence analysis Extensometer Selected historical extensometer Extensometer currently operating Well groups Well Measured and map identifier—The color represents the hydrogeologic unit in which the well was completed Lower aquifer Upper aquifer

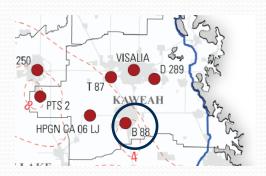

Most Recent Groundwater Level is ~ 10 to 20 ft Below the Critical Head




Critical Head Estimate for West Central Visalia

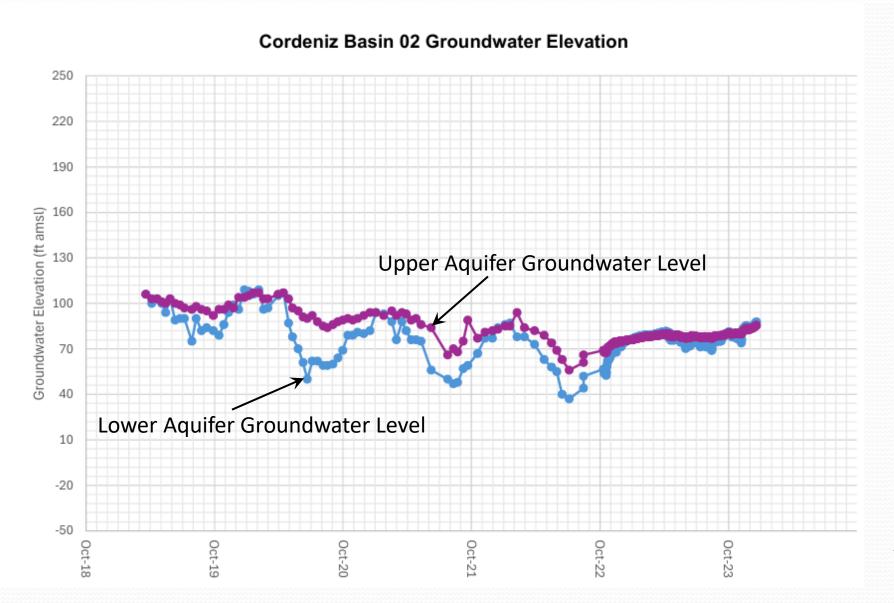


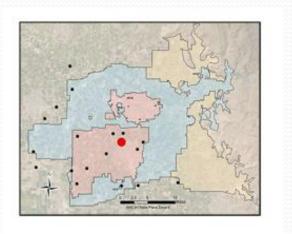

Most Recent Groundwater Level for Lower Aquifer Unavailable


Critical Head Estimate for West Central Visalia

Urban area—Cities and impervious roads Canals SGMA basins Benchmark—Benchmarks used in the subsidence analysis Extensometer Selected historical extensometer Extensometer currently operating Well groups Well Measured and map identifier—The color represents the hydrogeologic unit in which the well was completed Lower aquifer Upper aquifer

Most Recent Groundwater Level is ~ 50 ft Below the Critical Head


Observations of Bulletin 118 1D Critical Head Analyses


- The Sources of the Hydrographs Are Not Cited
 - There are No Lower Aquifer Wells in the Kaweah Subbasin Database in the Visalia Area
 - The Kaweah Database Does Not have Groundwater Level Records As Far Back As Shown in Bulletin 118
 - The Groundwater Levels in the Visalia Area for the "Lower Aquifer" are Similar to that Observed for Upper Aquifer Wells in the Database
 - Some of the "Lower Aquifer" Wells Have Elevations Higher than the "Upper Aquifer" Wells at Times – this is Contrary to the Known Vertical Head Distribution in the Area
- The 1D Analyses Fix the Groundwater Level after the Historical Period and Do Not Account for Seasonal Fluctuations

Groundwater Levels Are Typically Different Between the Upper and Lower Aquifers

Critical Head and Minimum Thresholds

"In areas experiencing land subsidence, groundwater levels may currently be below critical head levels, and inelastic subsidence is likely to be increased if groundwater levels decline further. In this situation, GSAs should revise the groundwater level sustainable management criteria to be set at or above the critical head level."

DWR Draft Subsidence BMP, July 2025

Critical Head and Minimum Thresholds

- What is the Relationship Between the Critical Head and the Lower Aquifer Groundwater Level Minimum Threshold (MT)?
 - Is the Critical Head the MT?
 - If Not, How Far Above the Critical Head Should it Be?
 - Note: Some Simulations Predict Ongoing Land Subsidence into the Future with Groundwater Levels 50 ft Above the Critical Head
 - Which Critical Head Should We Reference? The One in 2015? 2020? 2025?
 - Are We Responsible for pre-2015 Groundwater Levels Below the Critical Head that would Cause Ongoing Residual Land Subsidence?

Questions/Discussion

MEMORANDUM

FROM: Mark Larsen

DATE: December 08, 2025

SUBJECT: Board Summary

CC:

Meeting Overview

The Board of Directors of the Greater Kaweah Groundwater Sustainability Agency (GKGSA) met on December 8, 2025. Chairman Chris Tantau called the meeting to order at approximately 1:00 p.m. No formal action was taken in closed session, as the Board did not adjourn to closed session.

Public Comment

Public comment was received at various points throughout the meeting on agenda items, including water operations, mitigation activities, and land fallowing. Comments were provided by members of the public including Geoff Vanden Heuvel, Andrew Hart, and Tami McVay.

Kaweah Subbasin Groundwater Sustainability Plans (GSPs)

General Manager Larsen reported that on December 2, 2025, the State Water Resources Control Board approved returning the Kaweah Subbasin to the Department of Water Resources (DWR) for oversight based on the revised GSPs. DWR has already initiated follow-up coordination with Subbasin GSAs.

Core team activities continue to progress, including: - Completion of a second round of groundwater quality sampling; - Continued updates to monitoring sites; and - Ongoing coordination among Subbasin partners.

The Board expressed appreciation to staff for the outcome of the State Board action.

Administration, Workshops, and Committee Updates

Staff provided an update on December 4, 2025, workshop focused on native sustainable yield, noting strong attendance and engagement.

Committee updates included: - Technical Advisory Committee: November meeting canceled; next meeting scheduled for December 18, 2025. - Combined Rural Communities & Stakeholder Committees: November meeting canceled; next meeting scheduled for December 22, 2025. Grant program updates were also provided, including the status of MLRP applications.

Water Conditions Report

Kaweah Delta Water Conservation District provided a water operations report. Ending storage in Terminus Reservoir was approximately 28,000 acre-feet last month and approximately 30,000 acre-feet as of the meeting date. Coordination continues with the U.S. Army Corps of Engineers to manage storage without initiating flood releases.

Dashboard Groundwater Invoicing

Program Coordinator Ruiz provided updates on groundwater invoicing and enforcement:

• WY 2023: All Tier 1 and Tier 2 penalty liens have been recorded.

- WY 2024: Invoices have been issued, with approximately \$25 million in delinquent accounts. Enforcement actions are anticipated to begin in 2026.
- WY 2025: Invoicing preparation will begin in early 2026.

Land IQ - Daily ET Monitoring

Staff reported on the availability of a new Land IQ option to provide daily evapotranspiration (ET) data. The Stakeholder Committee reviewed the tool and recommended proceeding. The Board unanimously approved a one-year agreement with Land IQ for daily ET services

under the Client Services Agreement and Product License Agreement.

Well Mitigation Program

General Manager Larsen and 4Creeks staff provided updates on the Well Mitigation Program, including: - Continued coordination with Self-Help Enterprises; - Review of haul water supply and access site designs; - Consideration of current pilot dry well mitigation claims.

Staff was directed to review well mitigation policies and return with recommendations at a future meeting.

Land Fallowing Program

Program Manager Ruiz reported on the status of the 2025 Land Fallowing Program: - Approximately \$1 million in payments sent; -2026 water year report provided by Program Coordinator Rodriguez Twenty-five contracts executed; - A total of 3,358 acres enrolled.

Water Importation Efforts

General Manager Larsen reported ongoing coordination with Kaweah Delta Water Conservation District to secure surface water supplies in December. Staff was directed to continue negotiations related to CVP water importation, including contractor terms, pricing, and available acre-feet.

Monitoring Well Network

Tom Harder (Thomas Harder & Company) provided an update on priority monitoring well locations and network development. Discussion focused on sitting challenges and continued refinement of the monitoring strategy.

The next regular meeting of the GKGSA Board of Directors is scheduled for January 12, 2026, at 1:00 p.m.

Respectfully Submitted,

Mark Larsen Secretary